If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+7w-638=0
a = 1; b = 7; c = -638;
Δ = b2-4ac
Δ = 72-4·1·(-638)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-51}{2*1}=\frac{-58}{2} =-29 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+51}{2*1}=\frac{44}{2} =22 $
| 320=-8(-5x+10) | | (y-6)/2=(3-24)/5 | | 26(3y-9)=3(22y+3) | | -220=-10(7x-20) | | 1/1/2(n)=6 | | (5/8)x+14=-11 | | (5/8)t+14=-11 | | -553=7(5x-14) | | (x+2)^2=2x^2-x+8 | | 15+0.5p=3p | | 2x+7(2×-6)=-17-9× | | Y=6/5x+6 | | (5y+3)+(2y-5)=180 | | -376=8(5x-7) | | (3x-4)+(x-2)=62 | | 2x+x/3=-14 | | 5–2=x | | 410=5(7x+5) | | 6(2x-1)=3(2x+4)-10 | | 2x+8/4=2 | | (0)-(-9)=x | | x+3x+(3x-45)=180 | | 2x+8/4=2+ | | x+3x+(3x+45)=180 | | (-8)-(+7)=x | | x+3x+3x+45=180 | | 2x+4(x)=400 | | 4x-13-1=3x-5 | | 36(47x+35-46x-71=-99 | | 376=-8(-10x+13) | | (+8)-(-2)=x | | (x-1)^2=27 |